7,525 research outputs found

    Exploiting Causal Independence in Bayesian Network Inference

    Full text link
    A new method is proposed for exploiting causal independencies in exact Bayesian network inference. A Bayesian network can be viewed as representing a factorization of a joint probability into the multiplication of a set of conditional probabilities. We present a notion of causal independence that enables one to further factorize the conditional probabilities into a combination of even smaller factors and consequently obtain a finer-grain factorization of the joint probability. The new formulation of causal independence lets us specify the conditional probability of a variable given its parents in terms of an associative and commutative operator, such as ``or'', ``sum'' or ``max'', on the contribution of each parent. We start with a simple algorithm VE for Bayesian network inference that, given evidence and a query variable, uses the factorization to find the posterior distribution of the query. We show how this algorithm can be extended to exploit causal independence. Empirical studies, based on the CPCS networks for medical diagnosis, show that this method is more efficient than previous methods and allows for inference in larger networks than previous algorithms.Comment: See http://www.jair.org/ for any accompanying file

    Facilitating entry into shea processing: a study of two interventions in northern Ghana

    Get PDF
    There is considerable potential for the shea industry (Vitellaria paradoxa) to contribute to the economic empowerment of women in the Sahel Region of sub-Saharan Africa. This article examines interventions in Ghana's Upper West Region at two different processing stages of the value chain, intended to facilitate women's participation in, and enhance the benefits accruing from, shea harvesting and processing. We use the responses of the nut pickers and butter processors to qualitative and quantitative field research undertaken in 2010 to explore the constraints facing women's market participation. Results showed that mechanisms to link butter producers to markets and to sources of credit were key for the development of the shea value chain in a way that retains value locally and benefits rural producers. Complementary services also facilitated participation in the butter chains. For women to benefit, the ability to negotiate and influence the terms of trade between producers and buyers is important. Such market initiatives and interventions must be considered in the context of time management of diverse livelihood strategies. Also, how financial management and benefit sharing occur within households is sure to interact with the willingness of women to participate in new shea opportunities

    Successive Applications for the Writ of Habeas Corpus

    Get PDF

    Nonlinear c-axis transport in Bi_2Sr_2CaCu_2O_(8+d) from two-barrier tunneling

    Full text link
    Motivated by the peculiar features observed through intrinsic tunneling spectroscopy of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} mesas in the normal state, we have extended the normal state two-barrier model for the c-axis transport [M. Giura et al., Phys. Rev. B {\bf 68}, 134505 (2003)] to the analysis of dI/dVdI/dV curves. We have found that the purely normal-state model reproduces all the following experimental features: (a) the parabolic VV-dependence of dI/dVdI/dV in the high-TT region (above the conventional pseudogap temperature), (b) the emergence and the nearly voltage-independent position of the "humps" from this parabolic behavior lowering the temperature, and (c) the crossing of the absolute dI/dVdI/dV curves at a characteristic voltage V×V^\times. Our findings indicate that conventional tunneling can be at the origin of most of the uncommon features of the c axis transport in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We have compared our calculations to experimental data taken in severely underdoped and slightly underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} small mesas. We have found good agreement between the data and the calculations, without any shift of the calculated dI/dV on the vertical scale. In particular, in the normal state (above T∗T^\ast) simple tunneling reproduces the experimental dI/dV quantitatively. Below T∗T^\ast quantitative discrepancies are limited to a simple rescaling of the voltage in the theoretical curves by a factor ∼\sim2. The need for such modifications remains an open question, that might be connected to a change of the charge of a fraction of the carriers across the pseudogap opening.Comment: 7 pages, 5 figure

    Exploiting Contextual Independence In Probabilistic Inference

    Full text link
    Bayesian belief networks have grown to prominence because they provide compact representations for many problems for which probabilistic inference is appropriate, and there are algorithms to exploit this compactness. The next step is to allow compact representations of the conditional probabilities of a variable given its parents. In this paper we present such a representation that exploits contextual independence in terms of parent contexts; which variables act as parents may depend on the value of other variables. The internal representation is in terms of contextual factors (confactors) that is simply a pair of a context and a table. The algorithm, contextual variable elimination, is based on the standard variable elimination algorithm that eliminates the non-query variables in turn, but when eliminating a variable, the tables that need to be multiplied can depend on the context. This algorithm reduces to standard variable elimination when there is no contextual independence structure to exploit. We show how this can be much more efficient than variable elimination when there is structure to exploit. We explain why this new method can exploit more structure than previous methods for structured belief network inference and an analogous algorithm that uses trees

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    Magnetic susceptibility of ultra-small superconductor grains

    Full text link
    For assemblies of superconductor nanograins, the magnetic response is analyzed as a function of both temperature and magnetic field. In order to describe the interaction energy of electron pairs for a huge number of many-particle states, involved in calculations, we develop a simple approximation, based on the Richardson solution for the reduced BCS Hamiltonian and applicable over a wide range of the grain sizes and interaction strengths at arbitrary distributions of single-electron energy levels in a grain. Our study is focused upon ultra-small grains, where both the mean value of the nearest-neighbor spacing of single-electron energy levels in a grain and variations of this spacing from grain to grain significantly exceed the superconducting gap in bulk samples of the same material. For these ultra-small superconductor grains, the overall profiles of the magnetic susceptibility as a function of magnetic field and temperature are demonstrated to be qualitatively different from those for normal grains. We show that the analyzed signatures of pairing correlations are sufficiently stable with respect to variations of the average value of the grain size and its dispersion over an assembly of nanograins. The presence of these signatures does not depend on a particular choice of statistics, obeyed by single-electron energy levels in grains.Comment: 40 pages, 12 figures, submitted to Phys. Rev. B, E-mail addresses: [email protected], [email protected], [email protected]
    • …
    corecore